
A user's identity key
refreshes every while to
mitigate the effect of an
identity key
compromise.

Identity Keys Self-Healing

Stick sessions
Backward Secrecy
Sticky sessions provides
backward secrecy every a
maximum of N Encryptions.

Stick protocol provides
end-to-end encryption for
all of a user's devices.

Multi Device

Re-establishable
A user will be able to
securely re-
establish their
encryption sessions
when re-installing
the application.

Perfect Forward &
Backward Secrecy for
Sharing Sender Keys
Provided by the multiple pairwise sessions.

Sticky Sessions
Provides Perfect
Forward Secrecy
Every post shared is encrypted with a
unique key, which cannot be used to
derive older keys.

 • https://github.com/sticknet/stick-protocolSource Code

End-to-End
Encrypted
Content
A social network app using
Stick protocol will have all of
its content end-to-end
encrypted to the
designated parties.

An end-to-end encryption protocol tailored for social
network platforms, based on the Signal protocol. The
Stick Protocol is the first of its kind to support re-
establishable encryption sessions in an asynchronous
and multi-device setting while preserving forward
secrecy and introducing backward secrecy.

Stick Protocol

Based on Signal
Protocol
Which means that the Stick protocol
benefits from the Signal protocol's
security features as well.

Omar Basem | omarbasem.com

STICK PROTOCOL

Stick: an End-to-End Encryption Protocol Tailored for Social
Network Platforms

1. Motivation: End-to-End Encryption (E2EE) has become a de facto standard in messengers,

especially after the development of the secure messaging protocol – Signal. However, the
adoption of E2EE has been limited to messengers, and has not yet seen a noticeable trace in
social networks, despite the increase in users’ privacy violations. The Stick protocol is an E2EE
protocol, based on the Signal protocol, specifically designed for social networks. The Stick
Protocol is the first of its kind to support re-establishable encryption sessions in an asynchronous
and multi-device setting while preserving forward secrecy and introducing backward secrecy.

2. Design Overview: Stick’s design includes several innovative features, including sticky sessions,
multiple pairwise sessions, double-hashing and refreshing identity keys. Stick as its core relies on
sticky sessions, which is an E2E encrypted session between a user and a party that can be re-
established after STATE RESET* in an asynchronous and multi-device environment, and keeps
track of the ratcheting Message Keys while preserving forward secrecy and introducing
backward secrecy. Stick protocol provides the following benefits to a social network user, Alice:

• All of Alice’s posts will be end-to-end encrypted to the designated parties.

• Alice can re-establish her encryption sessions and view her posts even after reinstalling the app,
through the procedure shown in this diagram.

• Alice can view her content from any other device using her account.

• Alice still benefits from all the security features of the Signal protocol, such as X3DH.

• Alice benefits from identity keys self-healing.

• Sharing sender keys has perfect forward secrecy and perfect backward secrecy using multiple
pairwise sessions.

• Sharing posts using sticky sessions provides perfect forward secrecy.

• Sharing posts using sticky sessions provides backward secrecy every maximum of N Encryptions.

3. Formal Verification: I verified Stick using Verifpal - a formal verification tool in the symbolic
model. Security analysis shows the Stick protocol does achieve a form of post compromise
security in many-to-many communications, the trait which most group protocols lack. Most
importantly, the Stick protocol can re-establish encryption sessions while ensuring
authentication and confidentiality.

4. Implementation: I implemented the protocol as a stand-alone API. The implementation is

composed of 4 software libraries: Android library (Java), iOS library (Swift, Objective-C & C),
server library (Python), and client-handlers library (JavaScript). These 4 libraries are open-source
available on GitHub. Additionally, online usage documentation is available.

5. Performance Evaluation: Evaluation results shows the Stick protocol can be used
in a real-world social network app with no noticeable compromise on usability or performance.
The average overhead of sharing and receiving content is a mere 5.3%.

6. Conclusion: This work was an end-to-end process of developing the Stick protocol from design
and verification to implementation and evaluation. Stick protocol is already being used in
production in StickNet app. Stick protocol can be extended to areas other than social networking
where E2E encrypted re-establishable sessions would be useful. This includes IoTs, health care
and banking systems.

*For more information about the Stick protocol: https://www.sticknet.org/StickProtocol

https://signal.org/docs/
https://www.sticknet.org/stick-protocol#decryption
https://github.com/sticknet/stick-protocol
https://www.sticknet.org/stick-protocol/usage-documentation
https://omarbasem.com/pages/stickProtocolEvaluation.html
https://www.sticknet.org/
https://www.sticknet.org/stick-protocol

